RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, MARCH 2022

Paper : V [CC5]

SECOND YEAR [BATCH 2020-23] INDUSTRIAL CHEMISTRY (HONOURS)

Date : 02/03/2022 Time : 11 am - 1 pm

Answer **any five** questions:

Full Marks : 50

[5×10]

[3]

[3] [5]

[2]

[2]

[3]

- 1. a) Classify the different kind of engineering materials with examples.
 - b) Write the structure-property-application co-relationship of engineering materials for high performance applications. [5]
 c) Calculate the degree of polymerization if 6,6-nylon has a molecular weight of 120,000 g/mol. [2]
- 2. a) What is nanocystal?
 - b) Mention the different chemical & physical method employed to synthesize nanocystal.
 - c) When a fiber is made of PET, it has crystalline as well as amorphous phases and experiments have revealed that the average density of the overall material is 1.375 g/cc. It is known that the density of the crystalline phase is 1.455 g/cc and that amorphous phase is 1.335 g/cc. Calculate the mass fraction crystallinity (X) in %.

[Given:
$$\rho c = 1.455 \text{ g/cc}$$
, $\rho s = 1.375 \text{ g/cc}$, $\rho a = 1.335 \text{ g/cc}$] [2]

- 3. a) Write a note on composite material.
 - b) A uni directional C- fiber reinforced composite is made up of 30 volume % C-fiber, having a modulus of elasticity 320 Gpa, dispersed in polymer matrix which on hardening has a modulus of elasticity 3.5 Gpa. What will be the modulus of elasticity of the composite in longitudinal and transverse direction of the carbon fiber respectively. [2.5+2.5]
 - c) A cemented carbide cutting tool used for machining contains 75 wt% WC, 15 wt% TiC, 5 wt% TaC, and 5 wt% Co. Estimate the density of the composite.

[Given: The densities of the components of the composite are $\rho WC = 15.77 \text{ g/cc}, \rho TiC = 4.94 \text{ g/cc}, \rho TaC = 14.5 \text{ g/cc}, \rho Co = 8.9 \text{ g/cc}$] [3]

- 4. a) Write down the Hall-petch equation.
 - b) The lower yield point for an iron that has an average grain diammeter of 1*E-2 mm is 230 MPa. At a grain diameter of 6*E-3 mm, the yield point increases to 275 MPa. At what grain diameter will be the lower yield point 310 Mpa.

$\sigma_{ m y}$	d (mm)	$d^{-1/2}$ (mm) ^{-1/2}	
230 MPa	1*E ⁻²	10.0	
275 MPa	6*E ⁻³	12.91	

c) Draw different unit cells for seven crystal system.

[5]

5.	a)	Find out the packing fraction of a DLC and HCP system.	[3+4]
	b)	For potassium chloride (KCl), (a) calculate the packing fraction for the compound.	
		Given: $rK + = 0.134$ nm and $rcl = 0.182$ nm.	[3]
6.	a)	What are the difference between reflection and diffraction?	[5]
	b)	The density of common salt (Nacl) is 2.14 g/cm3. Calculate the Bragg angle (θ B) of diffraction for the (200) reflection using CuK α radiation ($\lambda = 1.542$ A°). The atomic weight of Sodium and chlorine are 23 and 35.5 respectively.	[5]
7.	a)	Classify the different nanostructures with examples.	[5]
	b)	The first peak in the powder x-ray diffraction pattern of an FCC metal (111) appears at a Bragg angle of 19.2° . The wave length of Cu-K α radiation is used 0.154 nm	
		i) Calculate the lattice parameter of the metal (in nm)?	
		ii) The full width of at half maxima (FWHM) of the first peak is 0.35°. Ignoring the microstrain	1
		and instrumental broadening, Find out the crystallite size of the sample (in nm). [2.	5+2.5]
8. a	a)	The powder X-ray diffraction pattern from a material with cubic structure, the first five lines are at θ values (in degrees) 19.2, 22.3, 32.48, 39.02 and 41.13. Find out the crystal structure of	
		the material.	[3]
	b)	Derive the mathematical expression of Schottky defect.	[7]

- x -